163,955 research outputs found

    Local dynamics in high-order harmonic generation using Bohmian trajectories

    Full text link
    We investigate high-order harmonic generation from a Bohmian-mechanical perspective, and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three step model. In the Bohmian scenario, this physical picture builds up non-locally near the core via the quantum mechanical phase of the wavefunction. This implies that the flow of the wavefunction far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.Comment: 7 pages, 3 figures; the manuscript has been considerably extended and modified with regard to the previous version

    The effect of bandwidth in scale-free network traffic

    Get PDF
    We model information traffic on scale-free networks by introducing the bandwidth as the delivering ability of links. We focus on the effects of bandwidth on the packet delivering ability of the traffic system to better understand traffic dynamic in real network systems. Such ability can be measured by a phase transition from free flow to congestion. Two cases of node capacity C are considered, i.e., C=constant and C is proportional to the node's degree. We figured out the decrease of the handling ability of the system together with the movement of the optimal local routing coefficient αc\alpha_c, induced by the restriction of bandwidth. Interestingly, for low bandwidth, the same optimal value of αc\alpha_c emerges for both cases of node capacity. We investigate the number of packets of each node in the free flow state and provide analytical explanations for the optimal value of αc\alpha_c. Average packets traveling time is also studied. Our study may be useful for evaluating the overall efficiency of networked traffic systems, and for allevating traffic jam in such systems.Comment: 6 pages, 4 figure

    Ground states and thermal states of the random field Ising model

    Get PDF
    The random field Ising model is studied numerically at both zero and positive temperature. Ground states are mapped out in a region of random and external field strength. Thermal states and thermodynamic properties are obtained for all temperatures using the the Wang-Landau algorithm. The specific heat and susceptibility typically display sharp peaks in the critical region for large systems and strong disorder. These sharp peaks result from large domains flipping. For a given realization of disorder, ground states and thermal states near the critical line are found to be strongly correlated--a concrete manifestation of the zero temperature fixed point scenario.Comment: 5 pages, 5 figures; new material added in this versio

    Division and the Giambelli Identity

    Get PDF
    Given two polynomials f(x) and g(x), we extend the formula expressing the remainder in terms of the roots of these two polynomials to the case where f(x) is a Laurent polynomial. This allows us to give new expressions of a Schur function, which generalize the Giambelli identity.Comment: 9 pages, 1 figur

    Apparent first-order wetting and anomalous scaling in the two-dimensional Ising model

    Get PDF
    The global phase diagram of wetting in the two-dimensional (2d) Ising model is obtained through exact calculation of the surface excess free energy. Besides a surface field for inducing wetting, a surface-coupling enhancement is included. The wetting transition is critical (second order) for any finite ratio of surface coupling J_s to bulk coupling J, and turns first order in the limit J_s/J to infinity. However, for J_s/J much larger than 1 the critical region is exponentially small and practically invisible to numerical studies. A distinct pre-asymptotic regime exists in which the transition displays first-order character. Surprisingly, in this regime the surface susceptibility and surface specific heat develop a divergence and show anomalous scaling with an exponent equal to 3/2.Comment: This new version presents the exact solution and its properties whereas the older version was based on an approximate numerical study of the mode

    Reversible Embedding to Covers Full of Boundaries

    Full text link
    In reversible data embedding, to avoid overflow and underflow problem, before data embedding, boundary pixels are recorded as side information, which may be losslessly compressed. The existing algorithms often assume that a natural image has little boundary pixels so that the size of side information is small. Accordingly, a relatively high pure payload could be achieved. However, there actually may exist a lot of boundary pixels in a natural image, implying that, the size of side information could be very large. Therefore, when to directly use the existing algorithms, the pure embedding capacity may be not sufficient. In order to address this problem, in this paper, we present a new and efficient framework to reversible data embedding in images that have lots of boundary pixels. The core idea is to losslessly preprocess boundary pixels so that it can significantly reduce the side information. Experimental results have shown the superiority and applicability of our work
    • …
    corecore